Extensions 1→N→G→Q→1 with N=C2 and Q=C23.4Q8

Direct product G=N×Q with N=C2 and Q=C23.4Q8
dρLabelID
C2×C23.4Q864C2xC2^3.4Q8128,1125


Non-split extensions G=N.Q with N=C2 and Q=C23.4Q8
extensionφ:Q→Aut NdρLabelID
C2.1(C23.4Q8) = C24.5Q8central extension (φ=1)64C2.1(C2^3.4Q8)128,171
C2.2(C23.4Q8) = C24.634C23central extension (φ=1)128C2.2(C2^3.4Q8)128,176
C2.3(C23.4Q8) = C24.635C23central extension (φ=1)128C2.3(C2^3.4Q8)128,177
C2.4(C23.4Q8) = C24.11Q8central stem extension (φ=1)164C2.4(C2^3.4Q8)128,823
C2.5(C23.4Q8) = (C2×C8).168D4central stem extension (φ=1)64C2.5(C2^3.4Q8)128,824
C2.6(C23.4Q8) = (C2×C4).27D8central stem extension (φ=1)64C2.6(C2^3.4Q8)128,825
C2.7(C23.4Q8) = (C2×C8).169D4central stem extension (φ=1)64C2.7(C2^3.4Q8)128,826
C2.8(C23.4Q8) = (C2×C8).60D4central stem extension (φ=1)128C2.8(C2^3.4Q8)128,827
C2.9(C23.4Q8) = (C2×C8).170D4central stem extension (φ=1)128C2.9(C2^3.4Q8)128,828
C2.10(C23.4Q8) = (C2×C8).171D4central stem extension (φ=1)128C2.10(C2^3.4Q8)128,829
C2.11(C23.4Q8) = C42.10D4central stem extension (φ=1)324C2.11(C2^3.4Q8)128,830

׿
×
𝔽